Def Let A be an nxn matrix.

(1) A <u>nonzero</u> vector $\overrightarrow{V} \in \mathbb{R}^n$ with $\overrightarrow{AV} = \lambda \overrightarrow{V}$ for some $\lambda \in \mathbb{R}$ is called an eigenvector of A with <u>eigenvalue</u> λ .

e.g.
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \quad \overrightarrow{\nabla} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow A\overrightarrow{\nabla} = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5\overrightarrow{\nabla}$$

 \Rightarrow \overrightarrow{V} is an eigenvector of A with eigenvalue 5.

(2) For an eigenvalue λ of A, the space Nul(A- λ I) is called the λ -eigenspace of A.

Note While an eigenvector must be nonzero, an eigenvalue may be zero.

Thm A square matrix A has an eigenvalue $\lambda \iff \det(A-\lambda I) = \mathbf{0}$ of A has an eigenvalue λ

 \iff $\overrightarrow{AV} = \overrightarrow{AV}$ for some nonzero vector $\overrightarrow{V} \in \mathbb{R}^n$

 \iff $(A-\lambda I)\overrightarrow{V}=\overrightarrow{0}$ for some nonzero vector $\overrightarrow{V}\in \mathbb{R}^n$

 \iff Nul(A- λ I) is not zero

 \iff RREF(A- λ I) has a column without a leading 1

 \iff RREF(A- λ I) \pm I

 \iff RREF(A- λ I) is not invertible

 \iff det $(A-\lambda I) = 0$

Note The λ -eigenspace Nul(A- λ I) consists of a zero vector and the eigenvectors of A with eigenvalue λ .

Ex Consider the matrix

$$A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$

(1) Determine whether the vector

$$\overrightarrow{U} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$$

is an eigenvector of A.

Sol We have

$$\overrightarrow{A} \overrightarrow{u} = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 8 \\ -8 \end{bmatrix}$$

which is not a multiple of \vec{u} .

$$\Rightarrow$$
 \vec{u} is not an eigenvector of A

(2) Determine whether the vector

$$\overrightarrow{V} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

is an eigenvector of A.

Sol We have

$$A\overrightarrow{\vee} = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix} = \overrightarrow{\vee}$$

 \Rightarrow \overrightarrow{V} is an eigenvector of A (with eigenvalue 1)

(3) Determine whether $\lambda = 2$ is an eigenvalue of A

Sol We have

$$A-2I = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -6 & -6 \\ -1 & 2 & 2 \\ 3 & -6 & -6 \end{bmatrix}$$

$$\Rightarrow$$
 det $(A-2I)=0$

$$\Rightarrow \lambda = 2$$
 is an eigenvalue of A

(4) Determine whether $\mu = 3$ is an eigenvalue of A

Sol We have

$$A-3I = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -6 & -6 \\ -1 & 1 & 2 \\ 3 & -6 & -7 \end{bmatrix}$$

$$\Rightarrow$$
 det $(A-3I) = -2 \neq 0$

$$\Rightarrow$$
 μ =3 is not an eigenvalue of A

(5) Find an eigenvalue of A3

<u>Sol</u> A has an eigenvalue $\lambda = 2$ as seen in (3).

Take an eigenvector \overrightarrow{w} of A with eigenvalue $\lambda = 2$

$$\Rightarrow A^{3}\overrightarrow{w} = AA(2\overrightarrow{w}) = 2A(2\overrightarrow{w}) = 2A(2\overrightarrow{w}) = 2 \cdot 2A(2\overrightarrow{$$

 $\Rightarrow \vec{w}$ is an eigenvector of A^3 with eigenvalue 8

Note In general, A^m has an eigenvalue λ^m (with \overrightarrow{w} as an eigenvector)

(6) Find a basis of the 2-eigenspace

<u>Sol</u> The 2-eigenspace is Nul(A-2I).

To find a basis, we solve the equation $(A-2I)\overrightarrow{x}=\overrightarrow{0}$

$$A-2I = \begin{bmatrix} 3 & -6 & -6 \\ -1 & 2 & 2 \\ 3 & -6 & -6 \end{bmatrix} \implies RREF(A-2I) = \begin{bmatrix} 1 & -2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow$$
 $X_1 - 2X_2 - 2X_3 = D \Rightarrow X_1 = 2X_2 + 2X_3$

Set $X_2 = S$ and $X_3 = t$ (free variables)

$$\Rightarrow \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 2S + 2t \\ S \\ t \end{bmatrix} = S \begin{bmatrix} 2 \\ 1 \\ D \end{bmatrix} + t \begin{bmatrix} 2 \\ D \\ 1 \end{bmatrix}$$

$$\Rightarrow$$
 A basis of Nul(A-2I) is given by $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$

Note Any nonzero linear combination of these basis vectors yields an eigenvector of A with eigenvalue 2